方差
[10-16 11:56:27] 来源:http://www.xuehuiba.com 九年级数学教案 阅读:8174次
概要: 四、教学注重问题 要注重通过例题讲好求方差题目的解题格式. 教学设计示例3 一、教学目的 1.使学生进一步理解方差、标准差的意义. 2.使学生把握利用简化公式计算一组数据的方差的方法. 3.使学生会根据同类问题两组数据的方差(或标准差)比较两组数据的波动情况. 二、教学重点、难点 重点:简化计算一组数据的方差公式. 难点:利用方差(或标准差)比较两组数据的波动情况. 三、教学过程 复习提问 1.什么是一组数据的方差、标准差? 2.一组数据的方差和标准差应如何计算? 引入新课 我们看到,用公式③计算一组数据的方差比较麻烦.那么,有否较简便的计算方法呢? 新课 教师应在黑板上进行如下推导: 推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论: 一般地,假如一组数据的个数是n,那么它们的方差可以用下面的公式计算: 在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算方差
方差,标签:中学数学教案,http://www.xuehuiba.com
四、教学注重问题
要注重通过例题讲好求方差题目的解题格式.
教学设计示例3
一、教学目的
1.使学生进一步理解方差、标准差的意义.
2.使学生把握利用简化公式计算一组数据的方差的方法.
3.使学生会根据同类问题两组数据的方差(或标准差)比较两组数据的波动情况.
二、教学重点、难点
重点:简化计算一组数据的方差公式.
难点:利用方差(或标准差)比较两组数据的波动情况.
三、教学过程
复习提问
1.什么是一组数据的方差、标准差?
2.一组数据的方差和标准差应如何计算?
引入新课
我们看到,用公式③计算一组数据的方差比较麻烦.那么,有否较简便的计算方法呢?
新课
教师应在黑板上进行如下推导:
推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论:
一般地,假如一组数据的个数是n,那么它们的方差可以用下面的公式计算:
在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算方差比公式③计算少了求各数据与平均数的差一步,因此比较方便.
例2 计算下面数据的方差(结果保留到小数点后第1位):
312133
教师可让学生共同来完成此例.
接下来教师按教材指出,当一组数据较大时,可按下述公式计算方差:
其中x'1=x1a,x'2=x2a,…,x'n=xna,x1,x2,…,xn是原已知的n个数据,a是接近这组数据的平均数的一个常数.
为使学生对公式⑥加深印象,可让学生用公式⑥解下例.
例3 甲、乙两个小组各10名学生的英语口语测验成绩如下(单位:分):
哪个小组学生的成绩比较整洁?
解后,指出解题步骤有如下三步:
(3)代入公式⑥计算方差并比较得解.
小结
1.本课介绍了当一组数据中的数值较小时,用以计算方差的简化计算公式⑤.
2.本课又学习了当一组数据中的数值较大时,用以计算方差的简化公式⑥.
练习:选用课本练习题.
作业:选用课本习题.
补充作业
2.甲、乙两组数据的方差之和为13,标准差之和为5,且甲的波动比乙的波动大,求它们各自的标准差.(答案:S 甲=3,S乙=2.)
3.在某次数学考试中,甲、乙两校各8个班,不及格的人数分别如下:
分别计算这两组数据的平均数与方差.
四、教学注重问题
要注重给学生讲如下三点:
1.方差与标准差是衡量样本和总体波动大小的特征数.
2.用简化计算公式求方差较为方便.
3.对同类问题的两组数据,方差小的波动小、方差大的波动大.
四、教学注重问题
要注重通过例题讲好求方差题目的解题格式.
教学设计示例3
一、教学目的
1.使学生进一步理解方差、标准差的意义.
2.使学生把握利用简化公式计算一组数据的方差的方法.
3.使学生会根据同类问题两组数据的方差(或标准差)比较两组数据的波动情况.
二、教学重点、难点
重点:简化计算一组数据的方差公式.
难点:利用方差(或标准差)比较两组数据的波动情况.
三、教学过程
复习提问
1.什么是一组数据的方差、标准差?
2.一组数据的方差和标准差应如何计算?
引入新课
我们看到,用公式③计算一组数据的方差比较麻烦.那么,有否较简便的计算方法呢?
新课
教师应在黑板上进行如下推导:
推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论:
一般地,假如一组数据的个数是n,那么它们的方差可以用下面的公式计算:
在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算方差比公式③计算少了求各数据与平均数的差一步,因此比较方便.
例2 计算下面数据的方差(结果保留到小数点后第1位):
312133
教师可让学生共同来完成此例.
接下来教师按教材指出,当一组数据较大时,可按下述公式计算方差:
其中x'1=x1a,x'2=x2a,…,x'n=xna,x1,x2,…,xn是原已知的n个数据,a是接近这组数据的平均数的一个常数.
为使学生对公式⑥加深印象,可让学生用公式⑥解下例.
例3 甲、乙两个小组各10名学生的英语口语测验成绩如下(单位:分):
哪个小组学生的成绩比较整洁?
解后,指出解题步骤有如下三步:
(3)代入公式⑥计算方差并比较得解.
小结
1.本课介绍了当一组数据中的数值较小时,用以计算方差的简化计算公式⑤.
2.本课又学习了当一组数据中的数值较大时,用以计算方差的简化公式⑥.
练习:选用课本练习题.
作业:选用课本习题.
补充作业
2.甲、乙两组数据的方差之和为13,标准差之和为5,且甲的波动比乙的波动大,求它们各自的标准差.(答案:S 甲=3,S乙=2.)
3.在某次数学考试中,甲、乙两校各8个班,不及格的人数分别如下:
分别计算这两组数据的平均数与方差.
四、教学注重问题
要注重给学生讲如下三点:
1.方差与标准差是衡量样本和总体波动大小的特征数.
2.用简化计算公式求方差较为方便.
3.对同类问题的两组数据,方差小的波动小、方差大的波动大.
Tag:九年级数学教案,中学数学教案,免费教案下载 - 数学教案 - 九年级数学教案
上一篇:用计算器求平均数、标准差与方差
分类导航
最新更新
推荐热门
- · 二次函数免费教学案下载1
- · 直接开平方法教学设计2
- · 一元二次方程教学设计2
- · 数学教学设计-画正多边形
- · 数学教学设计-反比例函数及其图象
- · 数学教学设计-圆内接四边形
- · 数学教学设计-两圆的位置关系
- · 正多边形和圆
- · 过三点的圆
- · 两圆的公切线