上学期 2.3 函数单调性与奇偶性
经学生思考,可找到函数 .然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?
例2. 已知函数 既是奇函数也是偶函数,求证: .(板书) (试由学生来完成)
证明: 既是奇函数也是偶函数,
= ,且 ,
= .
,即 .
证后,教师请
www.xuehuiba.com学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现, 只是解析式的特征,若改变函数的定义域,如 , , , ,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类
(4) 函数按其是否具有奇偶性可分为四类: (板书)
例3. 判断下列函数的奇偶性(板书)
(1) ; (2) ; (3) .
由学生回答,不完整之处教师补充.
解: (1)当 时, 为奇函数,当 时, 既不是奇函数也不是偶函数.
(2)当 时, 既是奇函数也是偶函数,当 时,
www.xuehuiba.com是偶函数.
(3) 当 时, 于是 ,
当 时, ,于是 = ,
综上 是奇函数.
教师小结 (1)(2)注意分类讨论的使用,(3)是分段函数,当 检验 ,并不能说明 具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须 均有 成立,二者缺一不可.
三. 小结
1. 奇偶性的概念
2. 判断中注意的问题
四. 作业 略
五. 板书设计
2.函数的奇偶性 例1. 例3.
(1) 偶函数定义
(2) 奇函数定义
(3) 定义域关于原点对称是函数 例2. 小结
具备奇偶性的必要条件
(4)函数按奇偶性分类分四类