简单的线性规划(一)
在平面直角坐标系中,所有点被直线l分三类:①在l上;②在l的右上方的平面区域;③在l的左下方的平面区域(如图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于A,它们满足不等式 ,这些点却在l的左下方的平面区域.
由此我们猜想,对直线l右上方的任意点 成立;对直线l左下方的任意点 成立,下面我们证明这个事实.
在直线 上任取一点 ,过点P作垂直于y轴的直线 ,在此直线上点P
www.xuehuiba.com右侧的任意一点 ,都有 ∴
于是
所以
因为点 ,是L上的任意点,所以,对于直线 右上方的任意点 ,
都成立
同理,对于直线 左下方的任意点 ,
都成立
所以,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集点.
是直线 右上方的平面区域(如图)
类似地,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集合 是直线 左下方的平面区域.
2.二元一次不等式 和 表示平面域.
(1)结论:二元一次不等式 在平面直角坐标系中表示直线 某一侧所有点组成的平面区域.
把直线画成虚线以表示区域不包括边界直线,若画不等式 就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.
(2)判断方法:由于对在直线 同一侧的所有点 ,把它的坐标 代入 ,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点 ,以 的正负情况便可判断 表示这一直线哪一侧的平面区域,特殊地,当 时,常把原点作为此特殊点.
【应用举例】
例1 画出不等式 表示的平面区域
解;先画直线 (画线虚线)取原点(0,0),代入 ,
∴ ∴ 原点在不等式 表示的平面区域内,不等式 表示的平面区域如图阴影部分.
例2 画出不等式组
表示的平面区域
分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.
解:不等式 表示直线 上及右上方的平面区域, 表示直线 上及右上方的平面区域, 上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.
课堂练习
作出下列二元一次不等式或不等式组表示的平面区域.
(1) (2) (3)
(4) (5)
总结提炼
1.二元一次不等式表示的平面区域.
2.二元一次不等式表示哪个平面区域的判断方法.
3.二元一次不等式组表示的平面区域.
布置作业
1.不等式 表示的区域在 的( ).
A.右上方 B.右下方 C.左上方 D.左下方
2.不等式 表示的平面区域是( ).
3.不等式组 表示的平面区域是( ).
4.直线 右上方的平面区域可用不等式 表示.
5.不等式组 表示的平面区域内的整点坐标是 .
6.画出 表示的区域.
答案:
1.B 2.D 3.B 4. 5.(-1,-1)
6.
- · 连乘 乘加 乘减 教学设计
- · 课堂因差错而精彩
- · 不等式的性质(一)
- · 不等式的证明(二)
- · 《数学乐园》活动课免费教学案下载与评析
- · 体积
- · 不等式的解法举例
- · 能追上小明吗
- · “预设”与“生成”不是“你死我活”
- · 圆心角、弧、弦、弦心距之间的关系(一)