当前位置:学会吧学习辅导免费教案下载数学教案八年级数学教案数学教学设计-角的平分线» 正文

数学教学设计-角的平分线

[10-16 11:56:27]   来源:http://www.xuehuiba.com  八年级数学教案   阅读:8178
概要: 例2已知:如图 3- 89,OE平分∠AOB,EC⊥OA于 C,ED⊥OB于 D.求证:(1)OC=OD;(2)OE垂直平分CD.分析:证明第(1)题时,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分线的性质定理得到 OC=OD.这样处理,可避免证明两个三角形全等. www.xuehuiba.com 练习4 课本第54页的练习.说明:训练学生将生活语言翻译成数学语言的能力.三、互逆命题,互逆定理的定义及应用1.互逆命题、互逆定理的定义.教师引导学生分析角平分线的性质,判定定理的题设、结论,使学生看到这两个命题的题设和结论正好相反,得出互逆命题、互逆定理的定义,并举出学过的互逆命题、互逆定理的例子.教师强调“互逆命题”是两个命题之间的关系,其中任何一个做为原命题,那么另一个就是它的逆命题.2.会找一个命题的逆命题,并判定它是真、假命题.例3写出下列命题的逆命题,并判断(1)~(5)中原命题和它的逆命题是真命题还是假命题:(1)两直线平行,同位角相等;(2)直角三角形
数学教学设计-角的平分线,标签:中学数学教案,http://www.xuehuiba.com
 

例2已知:如图 3- 89,OE平分∠AOB,EC⊥OA于 C,ED⊥OB于 D.求证:(1)OC=OD;(2)OE垂直平分CD.

分析:证明第(1)题时,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分线的性质定理得到 OC=OD.这样处理,可避免证明两个三角形全等.

www.xuehuiba.com

练习4  课本第54页的练习.

说明:训练学生将生活语言翻译成数学语言的能力.

三、互逆命题,互逆定理的定义及应用

1.互逆命题、互逆定理的定义.

教师引导学生分析角平分线的性质,判定定理的题设、结论,使学生看到这两个命题的题设和结论正好相反,得出互逆命题、互逆定理的定义,并举出学过的互逆命题、互逆定理的例子.教师强调“互逆命题”是两个命题之间的关系,其中任何一个做为原命题,那么另一个就是它的逆命题.

2.会找一个命题的逆命题,并判定它是真、假命题.

例3写出下列命题的逆命题,并判断(1)~(5)中原命题和它的逆命题是真命题还是假命题:

(1)两直线平行,同位角相等;

(2)直角三角形的两锐角互余;

(3)对顶角相等;

(4)全等三角形的对应角相等;

(5)如果|x|=|y|,那么x=y;

(6)等腰三角形的两个底角相等;

(7)直角三角形两条直角边的平方和等于斜边的平方.

说明:注意逆命题语言的准确描述,例如第(6)题的逆命题不能说成是“两底角相等的三角形是等腰三角形”.

3.理解互逆命题、互逆定理的有关结论.

例4  判断下列命题是否正确:

(1)错误的命题没有逆命题;

(2)每个命题都有逆命题;

(3)一个真命题的逆命题一定是正确的;

(4)一个假命题的逆命题一定是错误的;

(5)每一个定理都一定有逆定理.

通过此题使学生理解互逆命题的真假性关系及互逆定理的定义.

四、师生共同小结

www.xuehuiba.com

1.角平分线的性质定理与判定定理的条件内容分别是什么?

上一页  [1] [2] [3] [4]  下一页


Tag:八年级数学教案中学数学教案免费教案下载 - 数学教案 - 八年级数学教案
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13