当前位置:学会吧学习辅导免费教案下载数学教案高一数学教案数学教学设计-集合» 正文

数学教学设计-集合

[10-16 11:56:27]   来源:http://www.xuehuiba.com  高一数学教案   阅读:8607
概要: .4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。(2)互异性:集合中的元素没有重复。(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……2、“∈”的开口方向,不能把a∈A颠倒过来写。练习题1、教材P5练习2、下列各组对象能确定一个集合吗?(1)所有很大的实数。 (不确定)(2)好心的人。 (不确定)(3)1,2,2,3,4,5.(有重复)阅读教材第二部分,问题如下:1.集合的表示方法有几种?分别是如何定义的?2.有限集、无限集、空集的概念是什么?试各举一例。(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。例如,由方程 的所有解组成的集合,可以表示为{-1,1}.注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇
数学教学设计-集合,标签:高中数学教案,http://www.xuehuiba.com
  .

  4、集合中元素的特性

  (1)确定性:

  按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

  (2)互异性:

  集合中的元素没有重复。

  (3)无序性:

  集合中的元素没有一定的顺序(通常用正常的顺序写出)

注:

  1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

   元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  2、“∈”的开口方向,不能把a∈A颠倒过来写。

练习题

  1、教材P5练习

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数。 (不确定)

  (2)好心的人。       (不确定)

  (3)1,2,2,3,4,5.(有重复)

阅读教材第二部分,问题如下:

  1.集合的表示方法有几种?分别是如何定义的?

  2.有限集、无限集、空集的概念是什么?试各举一例。

(二)集合的表示方法

  1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。

  例如,由方程 的所有解组成的集合,可以表示为{-1,1}.

  注:(1)有些集合亦可如下表示:

    从51到100的所有整数组成的集合:{51,52,53,…,100}

    所有正奇数组成的集合:{1,3,5,7,…}

  (2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。

  描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。

  格式:{x∈A| P(x)} 

  含义:在集合A中满足条件P(x)的x的集合。

  例如,不等式  的解集可以表示为:   

      所有直角三角形的集合可以表示为: 

注:(1)在不致混淆的情况下,可以省去竖线及左边部分。

        如:{直角三角形};{大于104的实数}

  (2)错误表示法:{实数集};{全体实数}

  3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。

注:何时用列举法?何时用描述法?

  (1) 有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。

  如:集合 

  (2) 有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。

  如:集合  ;集合{1000以内的质数}

注:集合  与集合  是同一个集合吗?

答:不是。

  集合  是点集,集合  =  是数集。

(三) 有限集与无限集

  1、  有限集:含有有限个元素的集合。

  2、  无限集:含有无限个元素的集合。

  3、  空集:不含任何元素的集合。记作Φ,如: 

练习题:

  1、P6练习

  2、用描述法表示下列集合

  ①{1,4,7,10,13}             

  ②{-2,-4,-6,-8,-10}           

  3、用列举法表示下列集合

  ①{x∈N|x是15的约数}            {1,3,5,15}

  ②{(x,y)|x∈{1,2},y∈{1,2}}  {(1,1),(1,2),(2,1)(2,2)}

注:防止把{(1,2)}写成{1,2}或{x=1,y=2}

  ③                

  ④                 {-1,1}

  ⑤    {(0,8)(2,5),(4,2)}

  ⑥ 

 {(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}

三、小    结:

  本节课学习了以下内容:

  1.集合的有关概念:(集合、元素、属于、不属于、有限集、无限集、空集)

  2.集合的表示

www.xuehuiba.com

方法:(列举法、描述法、文氏图共3种)

  3.常用数集的定义及记法

四、课后作业:教材P7习题1.1

五、板书设计

课题

一、知识点

(一)

(二)

例题:

1.

2.

六、课后反思:

   本节课在教学时主要教会学生学习集合的表示方法,在认识集合时,应从两方面入手:

  (1)元素是什么?

  (2)确定集合的表示方法是什么?表示集合时,与采用字母名称无关。

探究活动

【题目】数集A满足条件:若  ,则   

(1)若  ,试求出A中其他所有元素;

(2)自己设计一个数属于A,然后求出A中其他所有元素;

(3)从上面两小题的解答过程中,你能悟出什么道理?并大胆证明你发现的这个“道理”.

【参考答案】

(1)其他所有元素为-1, 

(2)略

(3)A中只能有3个元素,它们分别是    且三个数的乘积为-1.    


上一页  [1] [2] [3] 


Tag:高一数学教案高中数学教案免费教案下载 - 数学教案 - 高一数学教案
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13