当前位置:学会吧学习辅导免费教案下载数学教案高二数学教案曲线和方程» 正文

曲线和方程

[10-16 11:56:27]   来源:http://www.xuehuiba.com  高二数学教案   阅读:8385
概要: www.xuehuiba.com 的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段 的中点坐标为(1,3),由斜率关系可求得l的斜率为 于是有 即l的方程为 ①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线 的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设 是线段 的垂直平分线上任意一点,则 即 将上式两边平方,整理得 这说明点 的坐标 是方程 的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点 的坐标 是方程①的任意一解,则 到 、 的距离分别为 所以 ,即点 在直线 上. 综合(1)、(2),①是所求直线的方程. 至此,证明完毕.回顾上述内容我们
曲线和方程,标签:高中数学教案,http://www.xuehuiba.com

www.xuehuiba.com

的方程.

  首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

  解法一:易求线段 的中点坐标为(1,3),

  由斜率关系可求得l的斜率为

  于是有

  即l的方程为

       ①

  分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线 的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

  证明:(1)曲线上的点的坐标都是这个方程的解.

  设 是线段 的垂直平分线上任意一点,则

          即

  将上式两边平方,整理得

  这说明点 的坐标 是方程 的解.

  (2)以这个方程的解为坐标的点都是曲线上的点.

  设点 的坐标 是方程①的任意一解,则

        的距离分别为

  

    

    

  

    

    

     所以 ,即点 在直线 上.

     综合(1)、(2),①是所求直线的方程.

    至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设 是线段 的垂直平分线上任意一点,最后得到式子 ,如果去掉脚标,这不就是所求方程 吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设 是线段 的垂直平分线上任意一点,也就是点 属于集合

  由两点间的距离公式,点所适合的条件可表示为

  将上式两边平方,整理得

  果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

  让我们用这个方法试解如下问题:

  例2:点 与两条互相垂直的直线的距离的积是常数 求点 的轨迹方程.

  分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

  求解过程略.

【概括总结】通过学生讨论,师生共同总结:

  分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

  首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

  (1)建立适当的坐标系,用有序实数对例如 表示曲线上任意一点 的坐标;

  (2)写出适合条件 的点 的集合

  (3)用坐标表示条件 ,列出方程

  (4)化方程 为最简形式;

  (5)证明以化简后的方程的解为坐标的点都是曲线上的点.

  一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

  上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

  下面再看一个问题:

  例3:已知一条曲线在 轴的上方,它上面的每一点到

www.xuehuiba.com

点的距离减去它到 轴的距离的差都是2,求这条曲线的方程.

  【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

  解:设点 是曲线上任意一点, 轴,垂足是 (如图2),那么点 属于集合

  由距离公式,点 适合的条件可表示为

          ①

上一页  [1] [2] [3]  下一页


Tag:高二数学教案高中数学教案免费教案下载 - 数学教案 - 高二数学教案
《曲线和方程》相关文章
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13