当前位置:学会吧学习辅导免费教案下载数学教案高二数学教案曲线和方程» 正文

曲线和方程

[10-16 11:56:27]   来源:http://www.xuehuiba.com  高二数学教案   阅读:8385
概要:将①式 移项后再两边平方,得 化简得 由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 、 、 ,且有 ,求点 轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设 、 的坐标为 、 ,则 的坐标为 , 的坐标为 . 根据条件 ,代入坐标可得 化简得 ①由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 、 的范围,最后曲线方程可表示为 【小结】师生共同总结:(1)解析几何研究研究问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?【作业】课本第72页
曲线和方程,标签:高中数学教案,http://www.xuehuiba.com

  将①式 移项后再两边平方,得

  化简得

  由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

  题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 ,且有 ,求点 轨迹方程.

  分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设 的坐标为 ,则 的坐标为 的坐标为

  根据条件 ,代入坐标可得

  化简得

             ①

  由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 的范围,最后曲线方程可表示为

 

【小结】师生共同总结:

  (1)解析几何研究研究问题的方法是什么?

  (2)如何求曲线的方程?

  (3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

板书设计】

§7.6 求曲线的方程

坐标法:

解析几何:

基本问题:

(1)

(2)

例1:

例2:

求曲线方程的步骤:

例3

练习:

小结:

作业:


上一页  [1] [2] [3] 


Tag:高二数学教案高中数学教案免费教案下载 - 数学教案 - 高二数学教案
《曲线和方程》相关文章
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13