当前位置:学会吧学习辅导免费教案下载数学教案九年级数学教案圆的内接四边形» 正文

圆的内接四边形

[10-16 11:56:27]   来源:http://www.xuehuiba.com  九年级数学教案   阅读:8665
概要:圆的内接四边形 1. 知识结构 2. 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注重观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3. 教法建议 本节内容需要一个课时. (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究; (2)在教学中以“发现——证实——应用”为主线,以“非凡——一般”的探究方法,引导学生发现与证实的思想方法. 一、教学目标: (一)知识目标 (1)了解圆内接多边形和多边形外接圆的概念; (2)把握圆内接四边形的概念及其性质定理; (3)熟练运用圆内接四边形的性质进行计算和证实. (二)能力目标 (1)通过圆的非凡内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力; (2)通过定理的
圆的内接四边形,标签:中学数学教案,http://www.xuehuiba.com

圆的内接四边形

    1. 知识结构
    2. 重点、难点分析
    重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.
    难点:定理的灵活运用.使用性质定理时应注重观察图形、分析图形,不要弄错四边形的
    外角和它的内对角的相互对应位置.
    3. 教法建议
    本节内容需要一个课时.
    (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;
    (2)在教学中以“发现——证实——应用”为主线,以“非凡——一般”的探究方法,引导学生发现与证实的思想方法.
    一、教学目标:
    (一)知识目标
    (1)了解圆内接多边形和多边形外接圆的概念;
    (2)把握圆内接四边形的概念及其性质定理;
    (3)熟练运用圆内接四边形的性质进行计算和证实.
    (二)能力目标
    (1)通过圆的非凡内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;
    (2)通过定理的证实探讨过程,促进学生的发散思维;
    (3)通过定理的应用,进一步提高学生的应用能力和思维能力.
    (三)情感目标
    (1)充分发挥学生的主体作用,激发学生的探究的热情;
    (2)渗透教学内容中普遍存在的相互联系、相互转化的观点.
    二、教学重点和难点:
    重点:圆内接四边形的性质定理.
    难点:定理的灵活运用.
    三、教学过程设计
    (一)基本概念
    假如一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆.
    (二)创设研究情境
    问题:一般的圆内接四边形具有什么性质?
    研究:圆的非凡内接四边形(矩形、正方形、等腰梯形)
    教师组织、引导学生研究.
    1、边的性质:
    (1)矩形:对边相等,对边平行.
    (2)正方形:对边相等,对边平行,邻边相等.
    (3)等腰梯形:两腰相等,有一组对边平行.
    归纳:圆内接四边形的边之间看不出存在什么公同的性质.
    2、角的关系
    猜想:圆内接四边形的对角互补.
    (三)证实猜想
    教师引导学生证实.(参看思路)
    思路1:在矩形中,外接圆心即为它的对角线的中点,∠A与∠B均为平角∠BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢?
    ∠A= ,∠C=
    ∴∠A ∠C=
    思路2:在正方形中,外接圆心即为它的对角线的交点.把圆心与各顶点相连,与各边所成的角均方45°的角.在一般的圆内接四边形中,把圆心与各顶点相连,能得到什么结果呢?
    这时有2(α β γ δ)=360°
    所以 α β γ δ=180°
    而 β γ=∠A,α δ=∠C,
    ∴∠A ∠C=180°,可得,圆内接四边形的对角互补.
    (四)性质及应用
    定理:圆的内接四边形的对角互补,并且任意一个外角等于它的内对角.
    (对A层学生应知,逆定理成立, 4点共圆)
    例 已知:如图,⊙O1与⊙O2相交于A、B两点,经过A的直线与⊙O1交于点C,与⊙O2交于点D.过B的直线与⊙O1交于点E,与⊙O2交于点F.
    求证:CE∥DF.
    (分析与证实学生自主完成)
    说明:①连结AB这是一种常见的引辅助线的方法.对于这道例题,连结AB以后,可以构造出两个圆内接四边形,然后利用圆内接四边形的关于角的性质解决.
    ②教师在课堂教学中,善于调动学生对例题、重点习题的剖析,多进行一点一题多变,一题多解的练习,培养学生发散思维,勇于创新.
    巩固练习:教材P98中1、2.
    (五)小结
    知识:圆内接多边形——圆内接四边形——圆内接四边形的性质.
    思想方法:①“非凡——一般”研究问题的方法;②构造圆内接四边形;③一题多解,一题多变.
    (六)作业:教材P101中15、16、17题;教材P102中B组5题.
    探究活动
    问题: 已知,点A在⊙O上,⊙A与⊙O相交于B、C两点,点D是⊙

www.xuehuiba.com

A上(不与B、C重合)一点,直线BD与⊙O相交于点E.试问:当点D在⊙A上运动时,能否判定△CED的外形?说明理由.
    分析 要判定△CED的外形,当运动到BD经过⊙A的圆心A时,此时点E与点A重合,可以发现△CED是等腰三角形,从而猜想对一般情况是否也能成立,进一步观察可发现在运动过程中∠D及∠CED的大小保持不变,△CED的外形保持不变.

[1] [2]  下一页


Tag:九年级数学教案中学数学教案免费教案下载 - 数学教案 - 九年级数学教案
《圆的内接四边形》相关文章
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13