当前位置:学会吧学习辅导免费教案下载数学教案九年级数学教案数学教学设计-圆、扇形、弓形的面积» 正文

数学教学设计-圆、扇形、弓形的面积

[12-02 22:36:19]   来源:http://www.xuehuiba.com  九年级数学教案   阅读:8785
概要: (2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和; (3)当弓形弧是半圆时,它的面积是圆面积的一半. 理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.(三)应用与反思练习:(1)如果弓形的弧所对的圆心角为60°,弓形的弦长为a,那么这个弓形的面积等于_______;(2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.(学生独立完成,巩固新知识)例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2) 教师引导学生并渗透数学建模思想,分析:(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了
数学教学设计-圆、扇形、弓形的面积,标签:中学数学教案,http://www.xuehuiba.com

 

  (2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;

  (3)当弓形弧是半圆时,它的面积是圆面积的一半.

  理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.

  (三)应用与反思

  练习:

  (1)如果弓形的弧所对的圆心角为60°,弓形的弦长为a,那么这个弓形的面积等于_______;

  (2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.

  (学生独立完成,巩固新知识)

  例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m2)

   教师引导学生并渗透数学建模思想,分析:

  (1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?

  (2)求截面上有水的弓形的面积为你提供什么信息?

  (3)扇形、三角形、弓形是什么关系,选择什么公式计算?

  学生完成解题过程,并归纳三角形OAB的面积的求解方法.

   反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.

  例4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求 与 围成的新月牙形ACED的面积S.

  解:∵ ,

  有∵

  

  

  组织学生反思解题方法:图形的分解与组合;公式的灵活应用.

  (四)总结

  1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;

  2、应用弓形面积解决实际问题;

  3、分解简单组合图形为规则圆形的和与差.

  (五)作业  教材P183练习2;P188中12.

圆、扇形、弓形的面积(三)

  教学目标

  1、掌握简单组合图形分解和面积的求法;

  2、进一步培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力;

  3、渗透图形的外在美和内在关系.

  教学重点简单组合图形的分解.

  教学难点对图形的分解和组合.

  教学活动设计:

  (一)知识回顾

  复习提问:1、圆面积公式是什么?2、扇形面积公式是什么?如何选择公式?3、当弓形的弧是半圆时,其面积等于什么?4、当弓形的弧是劣弧时,其面积怎样求?5、当弓形的弧是优弧时,其面积怎样求?

  (二)简单图形的分解和组合

  1、图形的组合

 

  让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力.

   2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积.

  以小组的形式协作研究,班内交流思想和方法,教师组织.给学生发展思维的空间,充分发挥学生的主体作用.

  归纳交流结论:

  方案1.S=S正方形-4S空白

  方案2、S=4S=4 (S半圆-SAOB)

  =2S-4SAOB=2S-S正方形ABCD

  方案3、S=4S=4 (S半圆-S正方形AEOF)

  =2S-4S正方形AEOF =2S-S正方形ABCD

  方案4、S=4 S半圆-S正方形ABCD

  ……………

  反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;②图形的美也存在着内在的规律.

  练习1如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少?

  分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成.

  解:连结AO,设P为其中一个三等分点,

  连结PA、PO,则△POA是等边三角形.

   .

  ∴

www.xuehuiba.com

  说明:① 图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积.

  练习2教材P185练习第1题

  例5、 已知⊙O的半径为R.

  (1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;

  (2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数).

  例5的计算量较大,老师引导学生完成.并进一步巩固正多边形的计算知识,提高学生的计算能力.

  说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的大小无关.实际上,古代数学

上一页  [1] [2] [3]  下一页


Tag:九年级数学教案中学数学教案免费教案下载 - 数学教案 - 九年级数学教案
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13