函数
问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)
www.xuehuiba.com
引导学生发现,函数是非凡的映射,非凡在集合A,B必是非空的数集.
2.本质:函数是非空数集到非空数集的映射.(板书)
然后让学生试回答刚才关于 是不是函数的问题,要求从映射的角度解释.
此时学生可以清楚的看到 满足映射观点下的函数定义,故是一个函数,这样解释就很自然.
教师继续把问题引向深入,提出在映射的观点下如何解释 是个函数?
从映射角度看可以是 其中定义域是 ,值域是 .
从刚才的分析可以看出,映射观点下的函数定义更具一般性,更能揭示函数的本质.这也是我们后面要对函数进行理论研究的一种需要.所以我们着重从映射角度再来熟悉函数.
3.函数的三要素及其作用(板书)
函数是映射,自然是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们熟悉一个函数时,应从这三方面去了解熟悉它.
例1 以下关系式表示函数吗?为什么?
(1) ; (2) .
解:(1)由 有意义得 ,解得 .由于定义域是空集,故它不能表示函数.
(2) 由 有意义得 ,解得 .定义域为 ,值域为 .
由以上两题可以看出三要素的作用
(1)判定一个函数关系是否存在.(板书)
例2 下列各函数中,哪一个函数与 是同一个函数.
(1) ; (2) (3) ; (4) .
解:先认清 ,它是 (定义域)到 (值域)的映射,其中
.
再看(1)定义域为 且 ,是不同的; (2)定义域为 ,是不同的;
(4) ,法则是不同的;
而(3)定义域是 ,值域是 ,法则是乘2减1,与 完全相同.
求解后要求学生明确判定两个函数是否相同应看定义域和对应法则完全一致,这时三要素的又一作用.
(2)判定两个函数是否相同.(板书)
下面我们研究一下如何表示函数,以前我们学习时虽然会表示函数,但没有相系统研究函数的表示法,其实表示法有很多,不过首先应从函数记号 说起.
4.对函数符号 的理解(板书)
首先让学生知道 与 的含义是一样的,它们都表示 是 的函数,其中 是自变量, 是函数值,连接的纽带是法则 ,所以这个符号本身也说明函数是三要素构成的整体.下面我们举例说明.
例3 已知函数 试求 (板书)
分析:首先让学生认清 的含义,要求学生能从变量观点和映射观点解释,再进行计算.
含义1:当自变量 取3时,对应的函数值即 ;
含义2:定义域中原象3的象 ,根据求象的方法知 .而 应表示原象 的象,即 .
计算之后,要求学生了解 与 的区别, 是常量,而 是变量, 只是 中一个非凡值.
最后指出在刚才的题目中 是用一个具体的解析式表示的,而以后研究的函数 不一定能用一个解析式表示,此时我们需要用其他的方法表示,具体的方法下节课再进一步研究.
三、小结
1. 函数的定义
2. 对函数三要素的熟悉
3. 对函数符号的熟悉
四、作业:略
五、板书设计
2.2函数 例1.例3.
一. 函数的概念
1. 定义
2. 本质 例2.小结:
3. 函数三要素的熟悉及作用
4. 对函数符号的理解
探究活动
函数在数学及实际生活中有着广泛的应用,在我们身边就存在着很多与函数有关的问题如在我们身边就有不少分段函数的实例,下面就是一个生活中的分段函数.
夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量相关.某人到一个水果店去买西瓜,价格表上写的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一个西瓜,称重后店主说5元1角,1角就不要了,给5元吧,可这位聪明的顾客马上说,你不仅没少要,反而多收了我钱,当顾客讲出理由,店主只好承认了错误,照实收了钱.
同学们,你知道顾客是怎样店主坑人了呢?其实这样的数学问题在我们身边有很多,只要你注重观察,积累,并学以至用,就能成为一个聪明人,因为数学可以使人聪明起来.
答案:
若西瓜重9斤以下则最多应付4.5元,若西瓜重9斤以上,则最少也要5.4元,不可能出现5.1元这样的价钱,所以店主坑人了.