数学教学设计-绝对值
[板书]2.4绝对值(1)
【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知
www.xuehuiba.com识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识.
师:-6的绝对值是表示-6的点到原点的距离,-6的绝对值是6;
6的绝对值是表示6的点到原点的距离,6的绝对值是6.
提出问题:(1)-3的绝对值表示什么?
(2)的绝对值呢?
(3)的绝对值呢?
学生活动:(1)(2)题根据教师的引导学生口答,(3)题讨论后口答.
[板书]一个数a的绝对值是数轴上表示数a的点到原点的距离.
数a的绝对值是|a|
【教法说明】由-6,6,-3,这些特殊的数的绝对值引出数的绝对值,逐层铺垫,由学生得出绝对值的几何意义,既理解了一个数的绝对值的含义也训练了学生口头表达能力,突破了难点.
(三)尝试反馈,巩固练习
师:数可以表示任意数,若把换成,9,0,-1,-0.4观察数轴,它们的绝对值各是多少?
学生活动:口答:,,,,
师:你在自己画的数轴上标出五个数,让同桌指出它们的绝对值.
学生活动:按教师要求自己又当“小老师”又当“学生”.
教师找一组学生回答,并及时纠正出现的错误.
(出示投影1)
例 求8,-8,,的绝对值.
师:观察数轴做出此题.
学生活动:口答
,,,.
师:由此题目你能想到什么规律?
学生活动:讨论得出—互为相反数的两数绝对值相同.
【教法说明】这一环节是对绝对值的几何定义的巩固.这里对于绝对值定义的理解不能空谈“5的绝对值、-7的绝对值是多少”?而是与数轴相结合,始终利用表示这数的点到原点的距离是这个数的绝对值这一概念.教师先阐明这个字母可表示任意数,再把换成一组数,学生自己又把换成了一些数,指出它们的绝对值,这样既理解了数所表示的广泛含义,又巩固了绝对值的定义.然后,通过例题总结出了互为相反数的两数的绝对值相等这一规律,既呼应了前面内容,又升华了绝对值的概念.
师:观察数轴,在原点右边的点表示的数(正数)的绝对值有什么特点?
在原点左边的点表示的数(负数)的绝对值呢?
生:思考,不能轻易回答出来.
师:再看前面我们所求的,,,,.你能得出什么规律吗?
学生活动:思考后一学生口答.
教师纠正并板书:
[板书]正数的绝对值是它本身.
负数的绝对值是它的相反数.
0的绝对值是0.
师:字母可表示任意的数,可以表示正数,也可以表示负数,也可以表示0.
教师引导学生用数学式子表示正数、负数、0,并再提问:这时的绝对值分别是多少?
学生活动:分组讨论,教师加入讨论,学生互相补充回答.
教师板书:
[板书]
若,则
若,则
若,则
师强调:这种表示方法就相当于前面三句话,比较起来后者更通俗易懂.
【教法说明】用字母表示规律是难点.这时教师放手,让学生有目的地考虑、分析,共同得出结论.
巩固练习:
(出示投影2)
1.化简:,,.
,,;
2.计算:①.
②.
③.
学生活动:1题口答,2题自己演算,三个学生板演.
【教法说明】1题的前四个旨在直接运用绝对值的性质,后两个略有加深,需要讨论后回答;2题(3)小题让学生区别绝对值符号和括号的不同含义.
(四)归纳小结
师:这节课我们学习了绝对值.
(1)一个数的绝对值是在数轴上表示这个数的点到原点的距离;
(2)求一个数的绝对值必须先判断是正数还是负数.
回顾反馈:
(出示投影3)
1.-3的绝对值是在_____________上表示-3的点到__________的距离,-3的绝对值是____________.
2.绝对值是3的数有____________个,各是___________;
绝对值是2.7的数有___________个,各是___________;
绝对值是0的数有____________个,是____________.
绝对值是-2的数有没有?
(总结:)
3.(1)若,则;
(2)若,则.
【教法说明】教师在总结完本节课的知识要点后,再回头对本节重点内容进行反馈练习,并且注意把知识进行升华.
八、随堂练习
1.判断题
(1)数的绝对值就是数轴上表示数的点与原点的距离( )
(2)负数没有绝对值( )
(3)绝对值最小的数是0( )
(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大( )
- · 同位角、内错角、同旁内角
- · 垂线
- · 相交线、对顶角
- · 角的度量
- · 角的比较
- · 多项式除以单项式
- · 单项式除以单项式
- · 同底数幂的除法 第二课时
- · 同底数幂的除法
- · 完全平方公式