当前位置:学会吧学习辅导免费教案下载数学教案八年级数学教案数学教学设计-一元二次方程实数根错例剖析课» 正文

数学教学设计-一元二次方程实数根错例剖析课

[10-16 11:56:27]   来源:http://www.xuehuiba.com  八年级数学教案   阅读:8265
概要:例5 若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。错解:△=[-2(m+2)]2-4(m2-1) =16 m+20 ∵ △≥0 ∴ 16 m+20≥0, ∴ m≥ -5/4 又 ∵ m2-1≠0, ∴ m≠±1 ∴ m的取值范围是m≠±1且m≥ - 错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,即m=±1时,方程变为一元一次方程,仍有实数根。正解:m的取值范围是m≥- 例6 已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。 www.xuehuiba.com 错解:∵方程有整数根,∴△=9-4a>0,则a<2.25又∵a是非负数,∴a=1或a=2令a=1,则x= -3± ,舍去;令a=2,则x1= -1、
数学教学设计-一元二次方程实数根错例剖析课,标签:中学数学教案,http://www.xuehuiba.com
例5   若关于 x的方程(m2-1)x2-2 (m+2)x+1=0有实数根,求m的取值范围。

错解:△=[-2(m+2)]2-4(m2-1)16 m+20

     ∵ △≥0

     ∴ 16 m+20≥0,

     ∴ m≥ -5/4

   又 ∵ m2-1≠0,

     ∴  m≠±1

     ∴ m的取值范围是m≠±1m≥ -

错因剖析:此题只说(m2-1)x2-2 (m+2)x+1=0是关于未知数x的方程,而未限定方程的次数,所以在解题时就必须考虑m2-1=0和m2-1≠0两种情况。当m2-1=0时,m=±1方程变为一元一次方程,仍有实数根。

正解:m的取值范围是m≥-  

例6  已知二次方程x2+3 x+a=0有整数根,a是非负数,求方程的整数根。

www.xuehuiba.com

错解:∵方程有整数根,

∴△=9-4a>0,a<2.25

又∵a是非负数,∴a=1a=2

a=1,x= -3± 舍去a=2,x1= -1、 x2= -2

∴方程的整数根是x1= -1, x2= -2

错因剖析:概念模糊。非负整数应包括零和正整数。上面答案仅是一部分,当a=0时,还可以求出方程的另两个整数根,x3=0, x4= -3

正解:方程的整数根是x1= -1, x2= -2 ,  x3=0, x4= -3

上一页  [1] [2] [3] [4] [5] [6]  下一页


Tag:八年级数学教案中学数学教案免费教案下载 - 数学教案 - 八年级数学教案
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13