当前位置:学会吧学习辅导免费教案下载数学教案八年级数学教案数学教学设计-一元二次方程实数根错例剖析课» 正文

数学教学设计-一元二次方程实数根错例剖析课

[10-16 11:56:27]   来源:http://www.xuehuiba.com  八年级数学教案   阅读:8265
概要:解:(1)当a=0时,方程为4x-1=0,∴x= (2)当a≠0时,∵△=16+4a≥0 ∴a≥ -4∴当a≥ -4且a≠0时,方程有实数根。又因为方程只有正实数根,设为x1,x2,则:x1+x2=- >0 ;x1. x2=- >0 解得 :a<0综 www.xuehuiba.com 上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0时,原方程只有正实数根。【小结】 以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。2、运用根与系数关系时,△≥0是前提条件。3、条件多面时(如例5、例6)考虑要周全。【布置作业】 1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。求证:关于x的方程上一页 [1] [2] [3] [4] [5] [6] 下一页
数学教学设计-一元二次方程实数根错例剖析课,标签:中学数学教案,http://www.xuehuiba.com

解:(1)当a=0时,方程为4x-1=0,∴x

(2)当a≠0时,∵△=16+4a≥0   a≥ -4

∴当a≥ -4a≠0时,方程有实数根。

又因为方程只有正实数根,设为x1,x2则:

x1+x2=- >0

x1. x2=- >0      解得 :a<0

www.xuehuiba.com

上所述,当a=0、a≥ -4、a<0时,即当-4≤a≤0原方程只有正实数根。

【小结】 以上数例,说明我们在求解有关二次方程的问题时,往往急于寻求结论而忽视了实数根的存在与“△”之间的关系。

1、运用根的判别式时,若二次项系数为字母,要注意字母不为零的条件。

2、运用根与系数关系时,△≥0是前提条件。

3、条件多面时(如例5、例6)考虑要周全。

【布置作业】  

1、当m为何值时,关于x的方程x2+2(m-1)x+ m2-9=0有两个正根?

2、已知,关于x的方程mx2-2(m+2)x+ m+5=0(m≠0)没有实数根。求证:关于x的方程

上一页  [1] [2] [3] [4] [5] [6]  下一页


Tag:八年级数学教案中学数学教案免费教案下载 - 数学教案 - 八年级数学教案
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13