当前位置:学会吧学习辅导免费教案下载数学教案高三数学教案组合» 正文

组合

[10-16 11:56:27]   来源:http://www.xuehuiba.com  高三数学教案   阅读:8843
概要:3.研究性题:在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形? (五)课后点评 在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力. 作业参考答案 2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人. 3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.探究活动同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?解 设四人分别为甲、乙、丙、丁,可从多种角度来解.解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:甲拿乙制作的贺卡时,则贺卡有3种分配方法.甲拿丙制作的贺卡时,则贺卡有3种分配方法.甲拿丁制作的贺卡时,则贺卡有3种分配方法.由加法原理得,贺卡分配方法有3+
组合,标签:高中数学教案,http://www.xuehuiba.com

  3.研究性题:

  在 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

    (五)课后点评

    在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

    作业参考答案

    2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或2.即男同学有5人或6人,女同学相应为3人或2人.

    3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.

探究活动

  同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

  解  设四人分别为甲、乙、丙、丁,可从多种角度来解.

  解法一  可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

  甲拿乙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丙制作的贺卡时,则贺卡有3种分配方法.

  甲拿丁制作的贺卡时,则贺卡有3种分配方法.

由加法原理得,贺卡分配方法有3+3+3=9种.

  解法二  可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

  正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).

  逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为   1.故符合题设要求的取法共有 (种).

  说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法.

  (2)设集合 ,如果S中元素的一个排列 满足 ,则称该排列为S的一个错位排列.本例就属错位排列问题.如将S的所有错位排列数记为 ,则 有如下三个计算公式(李宇襄编著《组合数学》,北京师范大学出版社出版):

  ①

  ②

  ③


上一页  [1] [2] [3] 


Tag:高三数学教案高中数学教案免费教案下载 - 数学教案 - 高三数学教案
上一篇:排列
Copyright 学会吧 All Right Reserved.
在线学习社区!--学会吧
1 2 3 4 5 6 7 7 8 9 10 11 12 13